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Abstract Trace metals always act as cofactors or coen-
zymes in many cellular processes. DeWciency or excess of
some metals will aVect the fermentation of lignocellulosic
hydrolysate. In order to make sure the deWcient or excessive
states of metals in culture medium, metal contents analysis
was conducted in Pichia stipitis ATCC 58784 cells, syn-
thetic medium, and diluted acid hydrolysate of rice straw.
The results showed that Cu, Ni, and Co were deWcient, and
Al was a little excessive. So the inXuences of Cu2+, Al3+,
Ni2+, and Co2+ additions on the growth and ethanol
production of ATCC 58784 were further researched. Low
concentration additions of Cu2+ and Al3+ (<0.24 mM and
<0.23 mM, respectively) improved biomass growth of
ATCC 58784 by 34 and 13%, respectively; however,
higher concentrations decreased biomass growth. On the
other hand, addition of Cu2+ (0.39 mM) did not aVect volu-
metric ethanol production signiWcantly (P = 0.05) and addi-
tion of Al3+ (0.38 mM) showed no inXuence on volumetric
ethanol production (P = 0.68). Addition of 0.074 mM Co2+

inhibited biomass growth of ATCC 58784 by 13% and vol-
umetric ethanol production by 10%. The biomass growth
and volumetric ethanol production of ATCC 58784 was
arrested by the addition of 0.33 mM of Ni2+ by 53 and 65%,
respectively.
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Introduction

Ethanol production from lignocellulose is very attractive
because of its low cost and abundance, and non-competi-
tion property against foodstuVs [1]. Economical production
of ethanol from lignocellulosic hydrolysate requires both
glucose and xylose eYciently [2]. However, the utilization
eYciency of xylose is relatively lower than that of glucose
and cannot meet the requirement of biofuels industry [3].

Pichia stipitis is one of the most outstanding xylose-
fermenting yeast [2], which can convert xylose to ethanol at
high yield [4]. Meanwhile, it is able to ferment most sugars
in lignocellulosic hydrolysate including glucose, mannose,
galactose, and cellobiose [5]. However, except for these
merits, the ethanol production rate of P. stipitis is relatively
low [1]. Oxygen, xylose concentration, pH and some
growth factor can aVect the performance of P. stipitis [6–9],
in which metals have great inXuence on its performance [8].

Metals are known as coenzymes or cofactors in many
cellular processes. Several transition metals, including
manganese, iron, nickel, cobalt, copper, and zinc are
required as catalysts in a variety of enzymatic reactions [10,
11]. However, excessive amounts of the same metal ions
are toxic and even can damage the functions that they serve
[10, 12–14]. Agbogbo and Wenger [15] pointed out that
high concentration of calcium could increase cell growth
while decrease ethanol production of P. stipitis. Mahler and
Guebel [16] found that 4 mM of Mg was optimal for bio-
mass growth and ethanol production of P. stipitis and that
lower concentration of Mg lead to 49% of carbon Xux to
xylitol production. Slininger and Dien et al. [8] stated that
the interaction of minerals with amino acids and/or urea
was critical to the optimization of ethanol production by
P. stipitis in both growing and stationary-phase cultures,
and the addition of optimum mineral supplement including
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Fe, Mn, Mg, Ca, and Zn could improve ethanol production
from 24 to 54 g/l. The role of trace metals in the metabolic
processes of microorganisms and higher organisms has
become a special interesting Weld for further research.

Although the inXuences of some trace metals, e.g., Cu2+,
Al3+, Co2+, and Ni2+, on some plants, yeasts and bacteria
have been studied and summarized by some researchers
[14, 17], their inXuence on P. stipitis is far from clear. In
addition, whether lignocellulosic hydrolysate contained
enough above-mentioned metals is still unclear. The objec-
tive of this study is Wrst to Wnd out the deWcient or excessive
states of metals in lignocellulosic hydrolysate compared
with P. stipitis ATCC 58784 cells, and then to evaluate the
eVects of several deWcient metal ions on the growth and
fermentation activity of P. stipitis ATCC 58784.

Materials and methods

Microorganism

The yeast, Pichia stipitis ATCC 58784 was supplied by the
American Type Culture Collection, which was preserved
on agar slant at 4°C and stored at ¡80°C with 15% glyc-
erol. The agar slant contained (per liter): peptone 5 g, yeast
extract 3 g, malt extract 3 g, CaCl2 100 mg, KH2PO4 2.5 g,
MgSO4·7H2O 500 mg, (NH4)2SO4 1 g, and xylose 10 g.

Dilute acid hydrolysate preparation

Dilute acid hydrolysate was prepared by hydrolyzing rice
straw with 1.6% H2SO4 (1:10 solid/liquid ratio) at 121°C for
2 h [18]. The hydrolysate was separated through a Whatman
GF/C Wlter paper and then neutralized by 23% ammonia
water, sodium hydroxide or Ca(OH)2 respectively. For some
samples, boiling for 5 min or overliming to pH 11 with
Ca(OH)2 were carried out. The hydrolysate (after neutral-
ization) was composed of 11.9 g/l of xylose, 3.3 g/l of
arabinose, 9.8 g/l of glucose, 1.5 g/l of galactose, 0.56 g/l of
5-hydroxymethyl-2-furfural (HMF) and 0.12 g/l of furfural.

Pre-culture and fermentation

P. stipitis ATCC 58784 was Wrst pre-cultured on basic medium
(BM, Table 1) with 10 g/l of xylose for 24 h. Then, 0.2 ml of
pre-cultured yeast was inoculated to 5 ml of BM for fermenta-
tion, and the samples were taken out after 48 h of cultivation.
CuSO4·5H2O (0–0.39 mM), KAl(SO4)2 (0–0.38 mM), NiCl2·
6H2O (0–0.33 mM), or CoCl2·6H2O (0–0.074 mM) was
added respectively to BM to research their inXuences. For
comparison, water addition was used as control.

The test tubes, sealed with porous silicon plugs and
added with 5 ml of BM, were used as reactors. The cultiva-

tions were conducted on a shaking table (30°C, 110 rpm)
and lasted for 48 h. The experiments were conducted in
triplicate and the results were the average values under the
designed conditions.

Samples for metal analysis

Accurate measurement of trace metals inside cells was a
useful method to Wnd out the fundamental requirement of
trace metals for microorganisms [19]. In order to know the
metal concentration in P. stipitis ATCC 58784 cells, 0.1 g
of dried 1 day cultivated cells (cultivated on BM with addi-
tional salts, see Table 2) was digested with concentrated
HNO3 and HClO4, and then was analyzed according to a
previous research [19]. For the convenience of comparison,
we presumed that the desired concentration of biomass in
fermentation was 5 g/l and then the metals in cells were
adjusted according to it.

At the same time, in order to Wnd out if the trace metals
required by ATCC 58784 were adequate in hydrolysate or
synthetic media, metal levels in diluted acid hydrolysate
and the synthetic media were also tested. The synthetic cul-
ture media (namely YPD) was composed by 5 g/l of pep-
tone, 3 g/l of yeast extract, and 3 g/l of malt extract.

Determinations

The value of pH was measured with Twin B-212 pH meter
(Horiba Company, Japan). Biomass was estimated from the
optical density of culture at 655 nm (OD655) measured with

Table 1 The composition of basic medium (BM) for fermentation

Ingredients Concentration 
(mg/l)

Ingredients Concentration 
(mg/l)

ZnSO4·7H2O 5.5 (NH4)2SO4 1000

MnCl2·4H2O 12.5 Yeast extract 3000

CaCl2·2H2O 28 Peptone 5000

MgSO4·7H2O 500 Malt extract 3000

FeSO4·7H2O 50 Xylose 18000

KH2PO4 2500

Table 2 Additional salts added to BM for cultivating cells for metal
analysis

Ingredients Concentration (mg/l)

CoCl2·6H2O 1.6

NiCl2·6H2O 6

CuSO4·5H2O 8

(NH4)6Mo7O24·4H2O 5

NaWO4·2H2O 0.5

KAl(SO4)2 0.5
123



J Ind Microbiol Biotechnol (2009) 36:491–497 493
a microplate reader BIO-RAD 550 (Nippon Bio-Rad Labo-
ratories, Osaka, Japan), using the estimate that an OD of
one is equivalent to 1.40 g/l of dry cells (data not shown).
High-performance liquid chromatography (HPLC),
equipped with Refractive Index (RI) detector (Jasco Inter-
national Co., Tokyo, Japan), was used to analyze the con-
tents of ethanol, xylose and xylitol in the culture after
separated from biomass by Wltering through a 0.2 �m Wlter.
The analysis was carried on a Shodex RSpak KC-811 col-
umn (SHOWA DENKO K.K., Kawasaki, Japan) at 60°C
with 1.0 ml/min eluent of water. Metals were analyzed by a
plasma atomic emission spectrophotometer (ICAP-757,
Nippon Jarrell-Ash, Kyoto, Japan), chemical pure salts and
deionized water were used to prepare the standard samples.

Statistical analysis

One-way ANOVA was used to test the signiWcance of the
results which was carried out with Microsoft excel software
at � = 0.05. P < 0.05, P < 0.01, and P < 0.001 denote the
signiWcance levels of the diVerence.

Results

Metal levels in cells, dilute acid hydrolysate, YPD and BM 
medium

Metal levels in cells, dilute acid hydrolysate, YPD and BM
medium were listed in Table 3. All the metals except W
were detected in ATCC 58784 cells. Among these metals,
Co2+, Ni2+, and Cu2+ were insuYcient in the hydrolysate,
YPD and BM medium. The concentration of Al3+ in the
hydrolysate is relatively higher than that in cells. The con-
centration of Ca2+ in the hydrolysate neutralized by
Ca(OH)2 was about 2,400 times higher than that in cells.
The result also indicated that overliming reduced the con-

centration of Zn, which is a cofactor for aldehyde dehydro-
genate (ADH), from about 0.048 mM to 0.006 mM.

Since there was potential insuYciency of Cu2+, Co2+,
and Ni2+ in the hydrolysate of rice straw, YPD and BM
medium, which possibly aVect the growth and ethanol pro-
duction of P. stipitis ATCC 58784, the inXuences of Cu2+,
Co2+, and Ni2+ additions were further researched. As Al3+

was suggested being toxic to plants and yeasts [20], the
inXuence of Al3+ on P. stipitis ATCC 58784 was also studied.

EVects of metal on biomass growth

The inXuence of Cu2+, Al3+, Ni2+ or Co2+ addition on bio-
mass growth of P. stipitis ATCC 58784 was depicted in
Fig. 1. Less than 0.24 mM of Cu2+ addition stimulated bio-
mass growth by 34%, however, biomass decreased when
more Cu2+ was added. Low concentration of Al3+ slightly
improved the growth of ATCC 58784 (P < 0.001), how-
ever, higher concentration of Al3+ (>0.23 mM) reduced its
growth from 4.28 g/l to 3.70 g/l. Ni2+ remarkably inhibited
biomass growth of ATCC 58784 (P < 0.001). When
0.33 mM of Ni2+ was added, the biomass concentration
decreased from 3.8 g/l to 1.8 g/l. The results of Co2+

implied that low concentration of Co2+ (<0.045 mM) had
little inXuence on biomass growth (P = 0.39), however,
higher concentration of Co2+ arrested the growth of ATCC
58784 by 13% (P < 0.001).

EVects of metal on volumetric ethanol production

The inXuence of metal addition on volumetric ethanol pro-
duction was depicted in Fig. 2. The results showed that
Cu2+ addition (<0.39 mM) seemed to have less impact on
volumetric ethanol production than on biomass growth of
ATCC 58784 (Fig. 1, P = 0.05). Addition of Al3+ had little
eVect on volumetric ethanol production (P = 0.68). Addition
of 0.074 mM Co2+ inhibited volumetric ethanol production

Table 3 Metal levels (mM) in 
5 g/l P. stipitis ATCC 58784 
(namely In cells), dilute acid 
hydrolysate neutralized by 
ammonia water (namely 
NH4OH), or by Ca(OH)2 (name-
ly Ca(OH)2), or neutralized and 
overlimed by Ca(OH)2 (namely 
Overliming), YPD media and 
basic medium (BM)

Metals In cells NH4OH Ca(OH)2 Overliming YPD BM

Zn 0.015 0.048 0.049 0.006 0.007 0.026

Co 0.001 ND ND ND ND ND

Ni 0.004 0.001 0.001 ND ND ND

Cu 0.010 ND ND ND ND ND

Mo 4.08E-05 2.19E-04 2.34E-04 2.03E-04 ND ND

W ND 0.002 0.003 0.001 3.80E-04 3.80E-04

Fe 0.065 0.202 0.187 0.054 ND 0.180

Al 0.009 0.210 0.310 0.110 ND ND

Mn 0.002 0.444 0.436 0.022 ND 0.063

Ca 0.016 0.444 37.7 28.2 0.084 0.274

Mg 0.508 2.18 2.75 1.83 0.126 2.156
ND not detected
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of ATCC 58784 by 10% (P < 0.05). Ni2+ started to show an
inhibition eVect on volumetric ethanol production of ATCC
58784 at a very low level (0.066 mM), and 0.33 mM of
Ni2+ arrested the volumetric ethanol production by 65%.

EVects of metal on xylose utilization

The inXuence of metals on xylose utilization was depicted
in Fig. 3. Addition of 0.078 mM of Cu2+ reduced xylose
consumption of ATCC 58784 from 1.72 g/l to 1.52 g/l
(P < 0.001), however, this inhibition eVect became less
with the increase of Cu2+ dosage (P < 0.05). Addition of
Al3+ and Co2+ had no inXuence on xylose consumption
(P = 0.59 and P = 0.41, respectively). Ni2+ inhibited xylose
consumption of ATCC 58784 signiWcantly (P < 0.001).
When 0.33 mM of Ni2+ was added, the xylose consumption
decreased by 53%.

EVects of metal on ethanol yield

The inXuence of metals on ethanol yield was depicted in
Fig. 4. Addition of Cu2+ increased ethanol yield of ATCC
58784 from 0.37 to 0.42 (0.31 mM of Cu2+ added)
(P < 0.05) and addition of Co2+ decreased ethanol yield
from 0.37 to 0.34 (0.060 mM of Co2+ added) (P < 0.05).
Addition of Al3+ has no inXuence on ethanol yield of ATCC
58784 (P = 0.64). Ethanol yield decreased from 0.37 to
0.27 along with the addition of Ni2+ increased from 0 to
0.33 mM (P < 0.001).

EVects of metal on ethanol production per gram biomass

The inXuence of metal addition on ethanol production per
gram biomass was depicted in Fig. 5. Addition of Cu2+

remarkably reduced the ethanol production per gram

Fig. 1 InXuence of metal addition on biomass growth of P. stipitis
ATCC 58784. Cu2+, closed square; Al3+, open square; Ni2+, triangle;
and Co2+, closed circle respectively
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Fig. 2 InXuence of metal addition on volumetric ethanol production
of P. stipitis ATCC 58784. Cu2+, closed square; Al3+, open square;
Ni2+, triangle; and Co2+, closed circle respectively
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Fig. 3 InXuence of metal addition on xylose utilization of P. stipitis
ATCC 58784. Cu2+, closed square; Al3+, open square; Ni2+, triangle;
and Co2+, closed circle respectively
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Fig. 4 InXuence of metal addition on ethanol yield of P. stipitis ATCC
58784. Cu2+, closed square; Al3+, open square; Ni2+, triangle; and
Co2+, closed circle respectively
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biomass of ATCC 58784 from 1.73 g/g to 1.29 g/g. How-
ever, when Cu2+ was further added from 0.08 mM to
0.39 mM, the ethanol production per gram biomass did not
change greatly (P = 0.18). Addition of Al3+ (<0.3 mM)
showed inhibitory tendency for ethanol production
(P = 0.08), however, the signiWcance of its inXuence was
not very certain, because further addition of Al3+ restored
and increased the ethanol production (P < 0.05). The etha-
nol production was signiWcantly reduced by 27% when
0.33 mM of Ni2+ was added (P < 0.001). The inXuence of
Co2+ on the ethanol production of ATCC 58784 was mod-
erate in this research (P = 0.08).

Discussions

Cu2+ is the cofactor of cytochrome c oxidase [10] which
plays a key role in the respiration metabolism of P. stipitis
[21, 22]. Addition of Cu2+ might stimulate the respiration of
ATCC 58784 and produce more energy for constructive
metabolism. As a result, the biomass growth increased
(Fig. 1). On the other hand, Cu2+ is also toxic to most
organisms at higher concentrations (more than 0.094 mM
for Saccharomyces cerevisiae) [10, 23]. And in this
research, biomass of ATCC 58784 decreased when more
than 0.24 mM of Cu2+ was added (Fig. 1). Furthermore,
Cu2+ showed inhibitory eVect on the ethanol production per
gram biomass of ATCC 58784 (Fig. 5). Although Cu2+

remarkably inXuenced the growth of ATCC 58784, it did
not aVect the volumetric ethanol production greatly
(Fig. 2). The similar eVect of Cu2+ on S. cerevisiae was
observed by MrvbiT and Ktanzer et al. [23] who found that
volumetric ethanol production and glucose utilization were
not remarkably aVected by addition of 0.4 mM of Cu2+,
although biomass decreased when the concentration of

Cu2+ exceeded 0.094 mM. It suggested that the inXuence of
Cu2+ on ethanol production activity was separated from that
on constructive metabolism [15]. The increase of ethanol
yield indicated that Cu2+ could improve xylose utilization
eYciency (Fig. 3 and Fig. 4).

Al is the most abundant metallic element, constituting
about 85% by weight of the outer crust of the earth [24]. To
our knowledge, no nutrient role is known for aluminum; on
the contrary, it has toxic eVect on plants, microorganisms
and human beings [20]. Low concentration of Al3+ was
reported to enhance cell division and growth of yeast [25].
From the results obtained, we found that the growth of
ATCC 58784 was improved when Al3+ lower than
0.23 mM, but decreased when Al3+ exceeded 0.23 mM. The
results also indicated that ethanol fermentation and xylose
utilization were not inXuenced by Al3+ addition though
Al3+ aVected the growth of ATCC 58784 (Figs. 1, 2, and 3).
Little inXuence of Al3+ was observed on ethanol production
per gram biomass, too (Fig. 5).

Ni2+ showed great inXuence on both growth and fermen-
tation ability of ATCC 58784. Although Ni2+-contained
enzymes are involved in many metabolic processes [26], it
is also known very toxic to many organisms, such as poten-
tially inhibiting the synthesis of macromolecules (e.g.,
RNA and protein) [27], inhibiting the acetylation of histone
H4 and damaging the heterochromatic regions of chromo-
somes [28], which reduces biomass growth in all (Fig. 1).
Also, Ni could interfere with the roles of other trace ele-
ments such as Mg and Fe [27, 28], which might aVect the
ethanol production pathway and arrest the ethanol yield of
ATCC 58784 (Fig. 2). The Wnding of Nishimura and Igar-
ashi et al. [27] indicated that 0.1 mM of Ni2+ was enough
for growth arrest of S. cerevisiae. In this study, 0.33 mM
addition of Ni2+ resulted in 53% reduction of biomass
growth and 27% decrease of ethanol production per gram
biomass of ATCC 58784. This result indicated that Ni2+

should not be added when using P. stipitis ATCC 58784 to
ferment xylose.

Co2+ plays a critical role in the synthesis of vitamin B12

[29–31]. However, excessive cobalt exposure can lead to
various malfunctions for microorganisms, such as ‘condi-
tioned iron deWciency’ [32], interference with the heme bio-
synthetic pathway [32], and increase of oxidative stress in
cells. Co2+ can also mimic or replace ions, e.g., magnesium
and calcium, in various essential reactions [30, 31, 33], and
prevent the normal processing of the precursor of cyto-
chrome c oxidase (COX) subunit 4 [31]. In this study, high
concentration of Co2+ (>0.045 mM) would decrease the
substrate oxidation rate, probably resulting in the decrease
of biomass growth (Fig. 1). Co2+ was also reported to be
able to substitute Zn in yeast alcohol dehydrogenase [34–36],
which might reduce the ethanol production of ATCC 58784
(Fig. 2).

Fig. 5 InXuence of metal addition on ethanol production per gram bio-
mass of P. stipitis ATCC 58784. Cu2+, closed square; Al3+, open
square; Ni2+, triangle; and Co2+, closed circle respectively
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Conclusions

The inXuences of Cu2+, Al3+, Ni2+, and Co2+ addition on the
growth and ethanol production of P. stipitis ATCC 58784
was researched in this study. Low concentration of Cu2+

and Al3+ (<0.24 mM and <0.23 mM, respectively) could
improve the biomass growth of ATCC 58784 by 34 and
13%, respectively, however, higher concentrations had
opposite eVects. Addition of 0.074 mM Co2+ inhibited the
biomass growth of ATCC 58784 by 13% and volumetric
ethanol production by 10%. Ni2+ is lethal to ATCC 58784.
The growth and ethanol production of ATCC 58784 was
nearly arrested by adding 0.33 mM of Ni2+. In the future,
the interaction of these metals, their interactions with the
macro metals (e.g., Zn and Mg), and the optimum metal
requirements for ethanol fermentation of rice straw hydro-
lysate should be investigated.
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